THE DNA SEQUENCE ENCODING GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (GAPC) ENZYME ON TUNTUN ANGIN PLANT (ELAEOCARPUS FLORIBUNDUS BI)


Dewi Indriyani Roslim(1*), Hestia Hairima(2), Herman Herman(3), Wahyu Lestari(4),


(1) Universitas Riau
(2) Universitas Riau
(3) Universitas Riau
(4) Universitas Riau
(*) Corresponding Author

Abstract


Glyceraldehyde 3-phosphate dehydrogenase (GapC) is an enzyme involved in glycolysis. The expression of this gene tends to abundant in eukaryotic cells, so this gene is frequently used as an internal control in gene expression analysis. This research aims to isolate the DNA sequence of the GapC gene from tuntun angin (Elaeocarpus floribundus BI). Methods included a collection of the leaves from Kajuik Lake, Riau Province then the DNA extraction, electrophoresis, amplification of partial DNA sequence of GapC gene, cloning and sequencing. The DNA sequence was analyzed using the BLASTn program and MEGA6 software. The GapC sequence obtained in this study was 933 bp in size, consisting of four introns and five exons, and encoding 137 deduced amino acids. The BLASTn analysis showed that the sequence has 89.84%-90.16% similarity to other species of Cunoniaceae family, such as species from the genus of Spiraeanthemum and Codia. The parsial sequence of E. floribundus GapC gene was more resemble the one of Spiraeanthemum than Codia genus. The GapC sequence obtained in this study was the first reported from the Elaeocarpaceae family. This sequence has the opportunity to serve as an internal control after validation.


Keywords


GapC gene, Elaeocarpus floribundus, internal control, Riau.

Full Text:

PDF

References


Claverie, J.M. & Noterdame, C. (2007). Bioinformatics for Dummies, 2nd Editions. Indianapolis, Indiana: Wiley Publishing, Inc.

Elvyra, R. & Yus, Y. (2012). Ikan Lais dan Sungai Paparan Banjir di Provinsi Riau. Pekanbaru: UR Press Pekanbaru.

Ezin V., Vodounon, C.A., de la Peña, R., Ahanchede, A. & Handa, A.K. 2012. Gene Expression and Phenotypic Characterization of Flooding Tolerance in Tomato. Journal of Evolutionary Biology Research 4(3): 59-65.

Kozera, B. & Rapacz, M. (2013). Reference Genes in Real-time PCR. J Appl Genetics 54:391–406.

Mafra, V., Kubo, K.S., Alves-Ferreira, M., Ribeiro-Alves, M., Stuart, R.M., Boava, L.P., Rodrigues, C.M. & Machado, M.A. (2012) Reference Genes for Accurate Transcript Normalization in Citrus Genotypes under Different Experimental Conditions. PLoS ONE 7(2): e31263. doi:10.1371/journal.pone.0031263

Olsen, K.M. & Schaal, B.A. (1999). Evidence on the Origin of Cassava: Phylogeography of Manihot sculenta. Proc. Natl. Acad. Sci. USA 96: 5586-5591.

Patankar, H.V., Assaha D.V.M., Al-Yahyai, R., Sunkar, R. & Yaish, M.W. (2016). Identification of Reference Genes for Quantitative Real-Time PCR in Date Palm (Phoenix dactylifera L.) Subjected to Drought and Salinity. PLoS ONE 11(11): e0166216. doi:10.1371/journal.pone. 0166216.

Ray, D.L. & Jhonson, J.C. (2014). Validation of reference genes for gene expression analysis in olive (Olea europaea) mesocarp tissue by quantitative real-time RT-PCR. BMC Research Notes. 7:304. http://www.biomedcentral.com/1756-0500/7/304

Roslim, D.I., Azrial, Herman & Lestari, W. (2018). The GAPDH Partial Gene of Durik-Durik (Syzygium sp.) from Riau Province of Indonesia. IOP Conf. Series: Journal of Physics: Conf. Series. 1116: 052055.

Roslim, D.I., Khumairoh, S. & Herman. (2016). Confirmation of Tuntun Angin (Elaeocarpus floribundus) Taxonomic Status Using matK and ITS Sequences. Biosaintifika: J. Biol. Biol. Edu. 8(3): 392-399.

Sinha, P., Saxena, R.K., Singh, V.K., Krishnamurthy, L. & Varshney, R.K. (2015). Selection and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under heat and salt stress conditions. Front. Plant Sci. 6:1071. doi: 10.3389/fpls.2015.01071.

Strand, A.E., Leebens-Mack, J. & Milligan, B.G. (1997). Nuclear DNA-based markers for plant evolutionary biology. Mol. Ecol. 6, 113-118.

Wang, M-L., Li, Q-H., Xin, H-H., Chen, X., Zhu, X-J., Li X-H. (2017). Reliable Reference Genes for Normalization of Gene Expression Data in Tea Plants (Camellia sinensis) Exposed to Metal Stresses. PLoS ONE 12(4): e0175863. https://doi.org/10.1371/journal.pone.0175863.

Wu, L., Tang, T., Zhou, R. & Shi, S. (2007). PCR-mediated Recombination of The Amplification Products of the Hibiscus tiliaceus Cytosolic Glyceraldehyde-3-phosphate Dehydrogenase Gene. Journal of Biochemistry and Molecular Biology 40(2): 172-179.

Zeng L, Deng R, Guo Z, Yang S, Deng X. 2016. Genome-wide identification and characterization of Glyceraldehyde-3phosphate dehydrogenase genes family in wheat (Triticum aestivum). BMC Genomics 17: 240.




DOI: https://doi.org/10.31289/biolink.v7i1.3310

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Fakultas Biologi, Universitas Medan Area

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License