PHYTOREMEDIATION OF HYDROCARBON-CONTAMINATED SOILS USING JARAK KEPYAR (Ricinus communis L) AND COMPOST


Firman Hidayat Madubun(1*), Radjali Amin(2), Dewi Rahyuni(3),


(1) Institut Teknologi Yogyakarta
(2) Institut Teknologi Yogyakarta
(3) Institut Teknologi Yogyakarta
(*) Corresponding Author

Abstract


Phytoremediation is known as one of the bioremediation techniques which may remove, stabilize, and/or destroy contaminants in the media. This study was aiming at collecting evidence of phytoremediation, which was applied with the addition of compost. Jarak Kepyar (Ricinus communis L.) was selected for this study because its seeds highly potency as biodiesel raw materials. Laboratory research scale was prepared, and the experiment design was complete random design with three replications. The experiment design was a full random design with three replications. The treatments were mixed contaminated soil (contaminated soil: compost = 3:1) and R. communis; and mixed garden soil (soil:compost=3:1) and R. communis; and contaminated soil without compost and R. communis. The statistical t-Test with a range of confidence at 95% showed that the phytoremediation significantly removed the Total Petroleum Hydrocarbons (TPH) at 97.7%. TPH accumulations were detected in roots and shoot ranged from 3377.6 mg/kg to 3555.0 mg/kg. R. communis leave development was the most sensitive indicator to biotoxicity of the hydrocarbons in the soils.

Keywords


Phytoremediation, Automotive workshop, Hydrocarbon, fuel crops, Ricinus communis L.

Full Text:

PDF

References


Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The Role of Microorganisms in Bioremediation- A Review. Open Journal of Environmental Biology, 2(1), 038-046. doi:https://doi.org/10.17352/ojeb.000007

Agnello, A. C., Bagard, M., Van Hullebusch, E. D., Esposito, G., & Huguenot, D. (2016). Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Science of the Total Environment, 563, 693-703.

Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., & Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnology Advances, 33(6), 745-755.

Couto, M. N. P., Monteiro, E., & Vasconcelos, M. T. S. (2010). Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation. Environmental Science and Pollution Research, 17(7), 1339-1346. Retrieved from https://link.springer.com/article/10.1007/s11356-010-0318-y

Cristaldi, A., Conti, G. O., Jho, E. H., Zuccarello, P., Grasso, A., Copat, C., & Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology & Innovation, 8, 309-326.

De Abreu, C. A., Coscione, A. R., Pires, A. M., & Paz-Ferreiro, J. (2012). Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments. Journal of Geochemical Exploration, 123, 3-7.

Ezeaku, P., & Egbemba, B. (2014). Yield of maize (Manoma spp) affected by automobile oil waste and compost manure. African Journal of Biotechnology, 13(11), 1250-1256. doi:10.5897/AJB2013.13603

Faucette, B. (2010). Compost's Role In Hydrocarbon Remediation. BioCycle, 51.

Furini, A., Manara, A., & DalCorso, G. (2015). Editorial: Environmental phytoremediation: plants and microorganisms at work. Frontiers in Plant Science, 6(520), 1-3. doi:10.3389/fpls.2015.00520

Hasibuan, S. Y., Yani, M., & Mansur, I. (2019). The effectiveness of oil spill dispersant addition for phytoremediation of petroleum-contaminated soil using Ricinus communis L. Journal of Degraded and Mining Lands Management, 6(3), 1811-1819. doi:10.15243/jdmlm.2019.063.1811

Hunt, L. J., Duca, D., Dan, T., & Knopper, L. D. (2019). Petroleum hydrocarbon (PHC) uptake in plants: A literature review. Environmental Pollution, 245, 472-484. doi:https://doi.org/10.1016/j.envpol.2018.11.012

Idris, M., Abdullah, S. R. S., Titah, H. S., Latif, M. T., Abasa, A. R., Husin, A. K., Hanima,R. F., Ayub, R. (2016). Screening and identification of plants at a petroleum contaminated site in Malaysia for phytoremediation. Journal of Environmental Science and Management, 19(1), 27-36.

Kathi, S., & Khan, A. B. (2011). Phytoremediation approaches to PAH contaminated soil. Indian Journal of Science and Technology, 4(1), 56-63.

Khamforoush, M., Bijan-Manesh, M.-J., & Hatami, T. (2013). Application of the Haug model for process design of petroleum hydrocarbon-contaminated soil bioremediation by composting process. International Journal of Environmental Science and Technology, 10(3), 533-544.

Kiran, B. R., & Prasad, M. N. V. (2017). Ricinus communis L. (Castor bean), a potential multipurpose environmental crop for improved and integrated phytoremediation. The EuroBiotech Journal, 1(2), 101-116. doi:https://doi.org/10.24190/ISSN2564-615X/2017/02.01

Kriipsalu, M., Marques, M., & Maastik, A. (2008). Characterization of oily sludge from a wastewater treatment plant flocculation-flotation unit in a petroleum refinery and its treatment implications. Journal of material cycles and waste management, 10(1), 79-86.

Marques, M., Rosa, G., Aguiar, C., Correia, S., & Carvalho, E. (2010). Seedling emergence and biomass growth of oleaginous and other tropical species in oil-contaminated soil. Open Waste Management Journal, 3, 26-32.

Nahar, K. (2015). Castor bean (Ricinus communis L.)-a biofuel plant: morphological and physiological parameters propagated from seeds in Bangladesh. Asian Business Review, 2(2), 64-66.

Ndimele, P. (2010). A review on the phytoremediation of petroleum hydrocarbon. Pakistan Journal of Biological Sciences, 13(15), 715.

Ngobiri, C., Ayuk, A., & Awuoso, I. (2007). Differential degradation of hydrocarbon fractions during bioremediation of crude of polluted sites in Niger Delta area. J. Chem. Soc. Nig, 32, 151-158.

Olivares, A. R., Carrillo-González, R., González-Chávez, M. d. C. A., & Hernández, R. M. S. (2013). Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. Journal of environmental management, 114, 316-323.

Osuji, L. C., & Nwoye, I. (2007). An appraisal of the impact of petroleum hydrocarbons on soil fertility: the Owaza experience. African Journal of Agricultural Research, 2(7), 318-324.

Pandey, V. C., Bajpai, O., & Singh, N. (2016). Energy crops in sustainable phytoremediation. Renewable and Sustainable Energy Reviews, 54, 58-73.

Prakash, V., Saxena, S., Sharma, A., Singh, S., & Singh, S. K. (2015). Treatment of oil sludge contamination by composting. Journal of Bioremediation & Biodegredation, 6(3), 1-6. doi: 10.4172/2155-6199.1000284

Putri, G. R. P., Waluyo, B., & Ardiarini, N. R. (2019). Fenologi dan Penampilan Karakter Morfo-Agronomi Galur-Galur Jarak Kepyar (Ricinus communis L.) Cholchisine Treatment 5 (CT5). Jurnal Produksi Tanaman, 7(5). 817-826

Rehn, L. S., Rodrigues, A. A., Vasconcelos-Filho, S. C., Rodrigues, D. A., de Freitas Moura, L. M., Costa, A. C., Carlos, L., de Fatima Sales, J., Zuchi, J., Angelini, L. P., de Lima Silva, F. H., Müller, C. (2019). Ricinus communis as a phytoremediator of soil mineral oil: morphoanatomical and physiological traits. Ecotoxicology, 29. 129-139 (2020). doi:10.1007/s10646-019-02147-6

Saadawi, S., Algadi, M., Ammar, A., Mohamed, S., & Alennabi, K. (2015). Phytoremediation effect of Ricinus communis, Malva parviflora and Triticum repens on crude oil contaminated soil. Journal of Chemical and Pharmaceutical Research, 7(9), 782-786.

Santoso, B. B., Sudika, I. W., Jaya, I. K. D., & Aryana, I. G. P. M. (2014). Hasil Biji dan Kadar Minyak Jarak Kepyar Lokal Beaq Amor (Ricinus communis L.) pada Berbagai Umur Pemangkasan Batang Utama. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 42(3), 244-249.

Tandon, M., Vasudevan, P., Naik, S. N., & Davies, P. (2013). Oil bearing seasonal crops in India: energy and phytoremediation potential. International Journal of Energy Sector Management, 7(3), 338-354. Retrieved from https://search.proquest.com/docview/1447813825?accountid=13771

Wang, K., Huang, H., Zhu, Z., Li, T., He, Z., Yang, X., & Alva, A. (2013). Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). International journal of phytoremediation, 15(3), 283-298.

Widodo, W., & Sumarah, S. (2007). Seri Budi Daya Jarak Kepyar, Tanaman Penghasil Minyak Kastor untuk Berbagai Industri: Kanisius, Yogyakarta.

Wiszniewska, A., Hanus-Fajerska, E., Muszynska, E., & Ciarkowska, K. (2016). Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere, 26(1), 1-12.

Yu, K., Wong, A., Yau, K., Wong, Y., & Tam, N. (2005). Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Marine pollution bulletin, 51(8), 1071-1077.




DOI: https://doi.org/10.31289/biolink.v7i1.3328

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Fakultas Biologi, Universitas Medan Area

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License