Penjadwalan Perkuliahan Dengan Metode Vertex Graph Coloring Dan Simulated Annealing

Anggi Natanael Silitonga(1*), Dicky Apdillah(2),


(1) Universitas Medan Area
(2) Universitas Medan Area
(*) Corresponding Author

Abstract


In college, lecture scheduling is very important in lecturing process, because the activities of lecturers and students depend on lecture schedule. To solve the problem, use Vertex GraphColoring and Simulated Annealing. In Vertex Graph Coloring, look for neighboring and neighboring vertices. While on Simulated Annealing, look for space and exchange positions randomly. The merger of Vertex Graph Coloring and Simulated Annealing aims to create optimum lecture schedule by looking at hard constraint and soft constraint. Testing is done at Faculty of Pharmacy University of North Sumatra, by making schedule from manual to computerized, so it is expected to make the schedule optimally and able to avoid hardconstaint and soft constraint.


Keywords


Scheduling, Vertex Graph Coloring, Simulated Annealing, Hard Constraint, SoftConstraint

Full Text:

PDF1

References


Dian Ariani. 2011. Optimasi Penjadwalan Mata Kuliah di Jurusan Teknik Informatika PENSdengan Menggunakan Algoritma Particle Swarm Optimization. Institut Teknologi Sepuluh Nopember.

Yelly Arviani. 2013. Algoritma Ant Colony System Dalam Penjadwalan Kegiatan BelajarMengajar di Sekolah Dasar. Jurnal Ilmu Komputer. Universitas Sumatera Utara.Latifah,S.S. (2011). Perbedaan Kerja Ilmiah Siswa Sekolah Alam dalam Pembelajaran Sains dengan Pendekatan PJBL Yang Terintegrasi. Tesis. Sekolah Pascasarjana Univesitas Pendidikan Indonesia.

Fang, H. 1994. Genetic Algorithms in Timetabling and Schedulling.Thesis. Edinburg,Scotland: University of Edinburgh.

J.A. Bondy, and Murty U.S.R. 1976.Graph Theory with Applications. North-Holland NewYork Amsterdam Oxford, Elsevier Science Publishing.

Gary Chartand, and Oellermann Ortrudr. 1993. Applied and Algorithmic Graph Theory. McGraw- Hiill, Inc.

Marek Kubale. 2004. Graph Coloring. AMS Bookstore.

Dimitris Bertsimas, and John Tsitsiklis. 1993. Simulated Annealing. Statictica Science.

Benjamin W. Wan, Yixin Chen, and Tao Wang. 2007. Simulated Annealing with AsymptoticConvergence for Nonlinear Constrained Optimization. Journal of Global Optimization Vol. 39, pp 1-37.

Wiwin Suwarningsih. 2014. Simulation of Object Movement in the Graph for DistributionOptimization Products Inter-City. Journal Scientific of Information Technology Applied, vol. 1 no. 1, pp 6-10.

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. 1983. Optimization by Simulated Annealing.Science New Series, vol. 220, no. 4598, pp. 671-680.




DOI: http://dx.doi.org/10.31289/jime.v1i2.2328

Article Metrics

Abstract view : 0 times
PDF1 - 0 times

Refbacks

  • There are currently no refbacks.


Program Studi Teknik Indusri, Fakultas Teknik, Universitas Medan Area
Universitas Medan Area, Jalan Kolam No. 1, Pasar V, Medan Estate, Sumatera Utara http://ojs.uma.ac.id/index.php/jimedan Email: jime@uma.ac.id
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License