KLASIFIKASI EKSPRESI WAJAH MENGGUNAKAN BAG OF VISUAL WORDS

Muhathir Muhathir

Abstract


Pada hakikatnya, manusia dapat membedakan pola terhadap suatu objek berdasarkan bentuk visual yang mengandung keadaan emosional. Seperti membedakan ekspresi wajah seseorang pada suatu citra. Manusia dapat membedakan ekspresi pada citra tersebut secara kasat mata. Namun komputer yang tidak dapat mengenali ekspresi wajah tersebut. Bag of visual words merupakan suatu skema untuk mengklasifikasikan citra berdasarkan nilai-nilai pixel pada citra. Dengan menggunakan deteksi interest point dan ekstraksi interest point, bag of visual words mengambil ciri unik pada citra sehingga dapat membedakan pola-pola yang terdapat pada suatu citra. Bag of visual word dengan nilai K 500 mampu mengklasifikasi pola ekspresi wajah dengan tingkat akurasi 69%,

Kata kunci: Wajah, Klasifikasi, Speed-up Robust Feature, Bag of visual words, Ekspresi

Keywords


SVM; Surf;

Full Text:

PDF

References


Gonzalez, R.C., & Woods, R.E. 1992. Digital Image Processing. Addison - Wesley Publishing Company, USA.

Gonzalez, R.C., & Woods, R.E. 2008. Digital Image Processing Third Edition. Addison - Wesley Publishing Company, USA.

Anil, K.J & Robert P.W.D. 2004. Introduction to pattern recognition. (online) http://rduin.nl/papers/PR_Intro.pdf (31 Agustus 2016).

Farhangi, Mohammad Mehdi, Soryani, Mohsen, & Fathy, Mahmood. 2013. Informative Visual Words Construction to Improve Bag of Words Image Representation. IET Image Process 8(5):310-318.

J.Lyons, Michael, Budynek, Julien & Akamatsu, Shigeru. 1999. Automatic Classification of Single Facial Images. Pattern Analysis and Machine Intelligence, Vol. 21, pp. 1357-1362.

Azhar, Rizal, Tuwohingide, Kamudi Dasrit, Sarimuddin, Suciati, Nanik. 2015. Batik Image Classification Using SIFT Feature Extraction. The Third Information Systems International Conference.pp. 24-30.

Bay, Herbert, Tuytelaars, Tinne & Van Gool, Luc. 2006. Surf: Speeded Up Robust Features. 9th European Conference on Computer Vision. 110(3):404-417.

Wu, Junjie. 2012. Advances in K-means Clustering- A Data Mining Thinking. Doctoral Theses- Springer, London.

Salomon, Chris & Breckon, Toby. 2011. Fundamentals of Digital Image Processing. Wiley-Blackwell: Oxford

Han, Jiawei & Kamber, Micheline. 2006. Data Mining: Concepts and Techniques. 2nd Edition. Morgan Kaufmann: Amsterdam

Shukla, Tuhin, Mishra, Nishchol & Sharma, Sanjeev. 2013. Automatic Image Annotation using SURF Features. International Journal Computer Applications 68(4):17-24B

Kim, Jinho, Kim, Byung-soo, & Savarese, Silvio. 2012. Classification of Satellite Images based on Scale-Invariant Feature Transform . Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV); Athens.

Cruz-Roa, Angel, C. Caicedo, Juan & Gonzalez, Fabio A. 2009. Visual Pattern Analysis in Histopathology Images Using Bag of Features. CIARP 2009. Pp 521-528.

Rizal, Fadlisyah, Muhathir, Akfal A Muammar. 2015. Detection System Tajwid Al Quran on Image Using Bray Curtis Distance. IJCAT, Volume 2, Issue 8.

Muhathir, Mawengkang. H, Ramli. M. 2017. Kombinasi Z-Fisher Transform dan Bray Curtis Distance untuk Pengenalan Pola Huruf Jar Pada Citra Al-Quran. BISMAN INFO, Volume 4, No 1.


Refbacks

  • There are currently no refbacks.


JITE : JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING
ISSN 2549-6255 (online) | ISSN 2549-6247 (Print)
Program Studi Teknik Informatika, Fakultas Teknik, Universitas Medan Area
Universitas Medan Area, Jalan Kolam No. 1, Pasar V, Medan Estate, Sumatera Utara http://ojs.uma.ac.id/index.php/jite dan Email: jite@uma.ac.id
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License