Sutrisno Sutrisno(1*),

(1) Universitas Islam Negeri Walisongo Semarang
(*) Corresponding Author


Rhizosphere bacteria live in the soil around plant roots. Various rhizosphere bacteria are able to produce the hormone Indole-3-Acetic Acid (IAA) which stimulates plant growth. This study aims to isolate and characterize IAA-producing rhizosphere bacteria in rice plants in the rice fields of Kedungpani urban village, Semarang city. Bacterial enumeration was carried out using the total plate count (TPC) method. The isolates obtained were characterized by observation of colony and cell morphology, gram staining, endospore staining, catalase test, and sugar fermentation test. The ability to produce the IAA hormone was tested using Salkowski's reagent. The enumeration results showed that the total bacteria in the sample was 2.9 x 105 CFU / g. A total of 10 isolates were obtained and were able to produce the IAA hormone with various concentrations. Isolates KP1, KP2, KP3, KP4, KP5, KP6, KP9, KP13, KP14, and KP15 produced IAA with concentrations of 3.389, 5.111, 3.000, 1.667, 1.944, 5.056, 5.444, 4.500, 5.056, and 10.833 ppm, respectively. The results showed that there were 5 isolates with the highest IAA concentrations, namely KP2, KP6, KP9, KP14, and KP15 which had the potential to be used as biostimulant agents for plants.


Rizosphere Bacteria; Indole-3-Acetic Acid (IAA); Isolation; Enumeration; Characterization

Full Text:



Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci. 26:1–20.

Bharucha, U., Patel, K., & Trivedi, U.B. (2013). Optimization of Indole Acetic Acid Production by Pseudomonas putida UB1 and its Effect as Plant Growth-Promoting Rhizobacteria on Mustard (Brassica nigra). Agricultural Research. 2: 215-221.

Chaiharn, M., & Lumyong, S. (2011). Screening and Optimization of Indole-3-Acetic Acid Production and Phosphate Solubilization from Rhizobacteria Aimed at Improving Plant Growth. Curr Microbiol. 62: 173-181.

Duca, D., Lorv, J., Patten, C.L., Rose, D., & Glick, B.R. (2014). Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek. 106(1):85-125.

Ei, S.L., Lwin, K.M., Padamyar, Khaing, H.O., & Yu, S.S. (2017) Study on IAA Producing Rhizobacterial Isolates and Their Effect in Talc-Based Carrier on Some Plants. J Soil Sci Plant Health. 1(1): 1-7.

Fierro-Coronado, R.A., Quiroz-Figueroa, F.R., García-Pérez, L.M., Ramírez-Chávez, E., Molina-Torres, J., & Maldonado-Mendoza, I.E. (2014). IAA-producing rhizobacteria from chickpea (Cicer arietinum L.) induce changes in root architecture and increase root biomass. Can. J. Microbiol. 60: 639–648.

Gusmiaty, Restu, M., & Payangan, R.Y. (2019). Production of IAA (Indole Acetic Acid) of the rhizosphere fungus in the Suren community forest stand. OP Conf. Series: Earth and Environmental Science. 343: 012058.

Hassan E., Alikhani, H.A., & Hosseini, H.M. (2015). Indole-3-acetic acid (IAA) production trait, a

useful screening to select endophyte and rhizosphere competent bacteria for rice growth

promoting agents. MethodsX. 2: 72-78.

Herlina, L., Pukan, K.K., & Mustikaningtyas, D. (2017). The endophytic bacteria producing IAA (Indole Acetic Acid) in Arachis hypogaea. Cell Biology & Development. 1 (1): 31-35.

Juwita, D. A., Suharti, N., & Rasyid, R. (2013). Isolasi jamur pengurai pati dari tanah limbah sagu. Jurnal Farmasi Andalas. 1(1): 35-41.

Kamaruzzaman, M.A., Abdullah, S.R.S., Hasan, H.A., Hassan, M., Othman, A.R., & Idris, M. (2020). Characterisation of Pb-resistant plant growth-promoting rhizobacteria (PGPR) from Scirpus grossus. Biocatalysis and Agricultural Biotechnology. 23.

Kesaulya, H., Baharuddin, Zakaria, B., &

Syaiful, S. A. (2015). Isolation and physiological characterization of PGPR from potato plant rhizosphere in medium land of Buru island. Procedia Food Science. 3: 190-199.

Liu, Y., Chen, L., Zhang, N., Li, Z., Zhang, G., Xu, Y., Shen, Q., & Zhang, R. (2016). Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9. Molecular Plant-Microbe Interaction. 29 (4) : 324-330.

Matsuda, R., Handayani, M.L., Sasaki, H., Takechi, K., Takano, H., & Takio, S. (2018). Production of indole acetic acid by strains of the epiphytic bacteria Neptunomonas spp. isolated from the red alga Pyropia yezoensis and the sea grass Zostera marina. Archives of Microbiology. 200(2): 255–265.

Nasution, J., Riyanto, R., & Prabowo, D. (2017). UJI EFEKTIVITAS BIO-INSEKTISIDA EKSTRAK DAUN TEMBAKAU (Nicotiana tabacum L) DAN RIMPANG JERINGAU (Acorus calamus L) TERHADAP HAMAWERENG COKLAT (Nilaparvata lugens) PADA TANAMAN PADI. EKSAKTA: Jurnal Penelitian dan Pembelajaran MIPA, 2(2), 92-95.

Ozdal, M., Ozdal, O.G., Sezen, A., & Algur, O.F. (2016). Biosynthesis Of Indole-3-Acetic Acid By Bacillus cereus Immobilized Cells. Cumhuriyet University Faculty of Science. 37(3):213-222

Pambudi, A., Susanti, & Taufiq, W., P. (2017). Isolasi dan Karakterisasi Bakteri Tanah Sawah di Desa Sukawali dan Desa Belimbing Kabupaten Tanggerang. Al-Kauniyah: Journal of Biology. 10 (2): 105-113.

Peng, H., de-Bashan, L.E., Bashan, Y., & Higgins, B.T. (2020). Indole-3-acetic acid from Azosprillum brasilense promotes growth in green algae at the expense of energy storage products. Algal Research. 47: 110.

Purwanto, Y., Yuwariah, Sumadi, & Simarmata, T. (2017). Nitrogenase activity and IAA production of indigenous diazotroph and its effect on rice seedling growth. AGRIVITA Journal of Agricultural Science. 39(1): 31-37.

Putrie, R.F.W., Widowati, T., Lekatompessy, S.J.R., & Sukiman, H. (2017). Studies for IAA (indole-3-acetic acid) production by isolate H6 with nitric acid mutation. Microbiol indones. 11(1):18-22.

Shameer, S., & Prasad, T.N.V.K.V. (2018) .Plant growth promoting rhizobacteria for sustainableagricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regulation. 84 (3): 603–615.

Spaepen S, & Vanderleyden J. 2011. Auxin and plant-microbe interactions. Cold Spring Harbor Perspect Biol. 3(4): a001438

Syamsia, Kuswinanti T, Syam’un E, & Masniawati A. (2015). The potency of endophytic fungal isolates collected from local aromatic rice as indole acetic acid (IAA) producer. Procedia Food Science. 3: 96  103.

Szkop, M., & Bielawski, W. (2013). A simple method for simultaneous RP-HPLC determination of indolic compounds related to bacterial biosynthesis of Indole-3-acetic acid. Antonie Van Leeuwenhoek. 103: 683 – 691.

Utami, A.D., Wiyono, S.W., Widyastuti, R., & Cahyono, P. (2020). Keanekaragaman Mikrob Fungsional Rizosfer Nanas dengan berbagai Tingkat Produktivitas. Jurnal Ilmu Pertanian Indonesia. 25 (4): 584-591.

Vishwakarma, K., Kumar, V., Tripathi, D.K., & Sharma, S. (2018). Characterization of rhizobacterial isolates from Brassica juncea for multitrait plant growth promotion and their viability studies on carriers. Environmental Sustainability. 1: 253-256.

Wahyudi, A.T., Astuti, R.P., Widyawati, A., Meryandini, A., & Nawangsih, A.A. (2011). Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. J Microbiol Antimicrobiol. 3: 34-40.

Walida, H., Harahap, F., Hasibuan, M., & Yanti, F. (2019). ISOLASI DAN IDENTIFIKASI BAKTERI PENGHASIL IAA DAN PELARUT FOSFAT DARI RHIZOSFER TANAMAN KELAPA SAWIT. BIOLINK : Jurnal Biologi Lingkungan Industri Kesehatan, 6(1), 1 - 7.

Yu, Z., Pei, H., Jiang, L., Hou, Q., Nie, C., & Zhang, L. (2018). Phytohormone addition coupled with nitrogen depletion almost tripled thelipid productivities in two algae. Bioresource Technology. 247: 904-914.Yu, Z., Pei, H., Jiang, L., Hou, Q., Nie, C., & Zhang, L. (2018). Phytohormone addition coupled with nitrogen depletion almost tripled thelipid productivities in two algae. Bioresource Technology. 247: 904-914.


Article Metrics

Abstract view : 0 times
PDF - 0 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Fakultas Saintek, Program Studi Biologi, Universitas Medan Area

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License