INTERACTION OF CO2 AND LIGHT AVAILABILITY ON PHOTOPHYSIOLOGY OF TROPICAL COCCOLITOPHORIDS (EMILIANIA HUXLEYI, GEPHYROCAPSA OCEANICA, AND OCHOSPHAERA SP.)
Authors
Nita Rukminasari , Muhammad Lukman , Khusnul YaqinDOI:
10.31289/biolink.v9i2.7912Published:
2023-02-15Issue:
Vol. 9 No. 2 (2023): FebruaryKeywords:
Calcification rate, Calcifying microalgae, Ocean acidification, Spermonde IslandsArticles
Downloads
How to Cite
Abstract
The study to examine the calcification rate, adaptation, and the biotic response of three tropical coccolithophorids (Emiliania huxleyi, Gephyrocapsa oceanica, and Ochosphaera sp) to changes in CO2 concentration. Three selected calcifying coccolitophorids were grown at batch culture with CO2 system at two levels of CO2 (385 and 1000 ppm) and two light dark periods. The parameters measured and calculation including growth rate, particulate organic carbon content, particulate inorganic carbon content, chlorophyll a, cell size, photosynthetic, organic, inorganic carbon production, photosynthesis, and calcification rate. The results showed that there was a different response to carbonate chemistry changes and dark and light periods in any of the analyzed parameters. The growth rate of three selected calcifying microalgae tested was decreasing significantly at high concentrations of CO2 (1000 ppm) treatment on 14:10 hour light: dark periods. However, there was no significant difference between the two CO2 concentrations where they were illuminated by 24 hours light in growth rate. The increasing CO2 concentration and light-dark periods were species-specific responses to photosynthesis and calcification rate for three selected calcifying microalgae.References
Antorno, A. M. P., Olland, D. A. P. H., Tojkovic, S. L. S., & Eardall, J. O. H. N. B. (2013). Impacts of nitrogen limitation on the sinking rate of the coccolithophorid Emiliania huxleyi ( Prymnesiophyceae ). Phycologia, 52(May), 288–294. https://doi.org/10.2216/12
Beardall, J., & Raven, J. A. (2013). Calcification and ocean acidification: New insights from the coccolithophore Emiliania huxleyi. New Phytologist, 199(1), 1–3. https://doi.org/10.1111/nph.12297
Benthien, A., Zondervan, I., Engel, A., Hefter, J., Terbrüggen, A., & Riebesell, U. (2007). Carbon isotopic fractionation during a mesocosm bloom experiment dominated by Emiliania huxleyi: Effects of CO2 concentration and primary production. Geochimica et Cosmochimica Acta, 71(6), 1528–1541. https://doi.org/10.1016/j.gca.2006.12.015
Brownlee, C., & Taylor, A. R. (2002). Algal Calcification and Silification. In Encyclopedia of Life Sciences (pp. 1–6). Macmillan Publisher Ltd. www.els.net
Celussi, M., Malfatti, F., Annalisa, F., Gazeau, F., Giannakourou, A., Pitta, P., Tsiola, A., & Del Negro, P. (2017). Ocean acidification effect on prokaryotic metabolism tested in two diverse trophic regimes in the Mediterranean Sea. Estuarine, Coastal and Shelf Science, 186, 125–138. https://doi.org/10.1016/j.ecss.2015.08.015
Coad, T., McMinn, A., Nomura, D., & Martin, A. (2016). Effect of elevated CO2 concentration on microalgal communities in Antarctic pack ice. Deep-Sea Research Part II: Topical Studies in Oceanography, 131, 160–169. https://doi.org/10.1016/j.dsr2.2016.01.005
Cornwall, C. E., Hepburn, C. D., Mcgraw, C. M., Currie, K. I., Pilditch, C. A., Hunter, K. A., Boyd, P. W., & Hurd, C. L. (2013). Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proceedings of the Royal Society B: Biological Sciences, 280(1772). https://doi.org/10.1098/rspb.2013.2201
De Bodt, C., Van Oostende, N., Harlay, J., Sabbe, K., & Chou, L. (2010). Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size. Biogeosciences, 7(5), 1401–1412. https://doi.org/10.5194/bg-7-1401-2010
Djaingsastro, A. J., Sinaga, H., & Sitorus, R. M. (2021). The effect of cocopeat and rice husk planting media hydroponically on the growth of palm oil in pre nursery. BIOLINK (Jurnal Biologi Lingkungan Industri Kesehatan), 7(2), 195-203.
Engel, A., Zondervan, I., Beaufort, L., Benthien, A., Delille, B., Villefranche, D., Harlay, J., Heemann, C., Hoffmann, L., Nejstgaard, J., Rochelle-newall, E., Schneider, U., & Terbrueggen, A. (2005). Testing the direct effect of CO 2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments Marie-Dominique Pizay. Limnology and Oceanography, 50(2), 493–507.
Fu, F.-X., Warner, M. E., Zhang, Y., Feng, Y., & Hutchins, D. a. (2007). Effects of Increased Temperature and Co 2 on Photosynthesis, Growth, and Elemental Ratios in Marine Synechococcus and Prochlorococcus (Cyanobacteria). Journal of Phycology, 43(3), 485–496. https://doi.org/10.1111/j.1529-8817.2007.00355.x
Fukuda, S., Suzuki, I., Hama, T., & Shiraiwa, Y. (2011). Compensatory response of the unicellular-calcifying alga Emiliania huxleyi (Coccolithophoridales, Haptophyta) to ocean acidification. Journal of Oceanography, 67(1), 17–25. https://doi.org/10.1007/s10872-011-0001-z
Gattuso, J. (1998). Effect of calcium carbonate saturation of seawater on coral calcification. Global and Planetary Change, 18(1–2), 37–46. https://doi.org/10.1016/S0921-8181(98)00035-6
Ginting, N., Amrul, H. M. Z., & Susilo, F. (2021). An overview of bryophytes division. BIOLINK (Jurnal Biologi Lingkungan Industri Kesehatan), 8(1), 10-20.
Guan, W., & Gao, K. (2010). Impacts of UV radiation on photosynthesis and growth of the coccolithophore Emiliania huxleyi (Haptophyceae). Environmental and Experimental Botany, 67(3), 502–508. https://doi.org/10.1016/j.envexpbot.2009.08.003
Hofmann, L. C., & Bischof, K. (2014). Ocean acidification effects on calcifying macroalgae. Aquatic Biology, 22, 261–279. https://doi.org/10.3354/ab00581
Iglesias-Rodriguez, M. D., Halloran, P. R., Rickaby, R. E. M., Hall, I. R., Colmenero-Hidalgo, E., Gittins, J. R., Green, D. R. H., Tyrrell, T., Gibbs, S. J., von Dassow, P., Rehm, E., Armbrust, E. V., Boessenkool, K. P., World, H., Iglesias-Rodriguez, M. D., Halloran, P. R., Rickaby, R. E. M., Hall, I. R., Colmenero-Hidalgo, E., … Boessenkool, K. P. (2008). Phytoplankton calcification in a high-CO2 world. Science (New York, N.Y.), 320(5874), 336–340. https://doi.org/10.1126/science.1154122
Jin, P., Gao, K., & Beardall, J. (2013). Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification. Evolution; International Journal of Organic Evolution, 67(7), 1869–1878. https://doi.org/10.1111/evo.12112
Langer, G., Geisen, M., Baumann, K.-H., Kläs, J., Riebesell, U., Thoms, S., & Young, J. R. (2006). Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochemistry, Geophysics, Geosystems, 7(9), n/a-n/a. https://doi.org/10.1029/2005GC001227
Langer, G., Oetjen, K., & Brenneis, T. (2013). Coccolithophores do not increase particulate carbon production under nutrient limitation: A case study using Emiliania huxleyi (PML B92/11). Journal of Experimental Marine Biology and Ecology, 443, 155–161. https://doi.org/10.1016/j.jembe.2013.02.040
Mongin, M., & Baird, M. (2014). The interacting effects of photosynthesis , calcification and water circulation on carbon chemistry variability on a coral reef flat : A modelling study. Ecological Modelling, 284, 19–34. https://doi.org/10.1016/j.ecolmodel.2014.04.004
Muller, M. N., Schulz, K. G., & Riebesell, U. (2009). E ff ects of long-term high CO 2 exposure on two species of coccolithophores. Biogeosciences Discussions, 6, 10963–10982.
Murata, A. (2006). Increased surface seawater pCO2 in the eastern Bering Sea shelf: An effect of blooms of coccolithophorid Emiliania huxleyi? Global Biogeochemical Cycles, 20(4), 1–9. https://doi.org/10.1029/2005GB002615
Olson, M. B., Wuori, T. A., Love, B. A., & Strom, S. L. (2017). Ocean acidi fi cation effects on haploid and diploid Emiliania huxleyi strains : Why changes in cell size matter. Journal of Experimental Marine Biology and Ecology, 488, 72–82. https://doi.org/10.1016/j.jembe.2016.12.008
Patidar, F. (2017). Carbon Sequestration by Microalgae : A Green Approach for Climate Change Mitigation. Encyclopedia of Sustainable Technologies, 3, 477–483.
Pujiastuti, P., Putri, R. J., & Suseno, S. (2021). Determination of the tropical status of floating net cage water based on the distribution of nitrogen, phosphorus and chlorophyll-a. BIOLINK (Jurnal Biologi Lingkungan Industri Kesehatan), 7(2), 172-184.
Raeesossadati, M. J., Ahmadzadeh, H., McHenry, M. P., & Moheimani, N. R. (2014). CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature. Algal Research, 6(PA), 78–85. https://doi.org/10.1016/j.algal.2014.09.007
Rickaby, R. E. M., Hermoso, M., Lee, B. Y., Rae, B. D., Heureux, A. M. C., Balestreri, C., Chakravarti, L., Declan, C., & Brownlee, C. (2016). Environmental carbonate chemistry selects for phenotype of recently isolated strains of Emiliania huxleyi. Deep-Sea Research Part II, 16, 1–50. https://doi.org/10.1016/j.dsr2.2016.02.010
Riebesell, U., Revill, A. T., Holdsworth, D. G., & Volkman, J. K. (2000). The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochimica et Cosmochimica Acta, 64(24), 4179–4192. https://doi.org/10.1016/S0016-7037(00)00474-9
Rokitta, S. D., & Rost, B. (2012). Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 57(2), 607–618. https://doi.org/10.4319/lo.2012.57.2.0607
Shin, K. H., Tanaka, N., Harada, N., & Marty, J. C. (2002). Production and turnover rates of C37 alkenones in the eastern Bering Sea: Implication for the mechanism of a long duration of Emiliania huxleyi bloom. Progress in Oceanography, 55(1-2 SPEC ISS.), 113–129. https://doi.org/10.1016/S0079-6611(02)00073-3
Singh, S. K., Sundaram, S., Sinha, S., Rahman, M. A., & Kapur, S. (2016). Recent advances in CO2 uptake and fixation mechanism of cyanobacteria and microalgae. Critical Reviews in Environmental Science and Technology, 46(16), 1297–1323. https://doi.org/10.1080/10643389.2016.1217911
Stoll, H. M., Klaas, C. M., Probert, I., Ruiz, J., & Garcia, J. I. (2002). Calcification rate and temperature effects on Sr partitioning in coccoliths of multiple species of coccolithophorids in culture. Global and Planetary Change, 34, 153–171.
Wang, Z., Wang, Y., & Yan, C. (2016). Simulating ocean acidification and CO2 leakages from carbon capture and storage to assess the effects of pH reduction on cladoceran Moina mongolica Daday and its progeny. Chemosphere, 155, 621–629. https://doi.org/10.1016/j.chemosphere.2016.04.086
Xu, K., & Gao, K. (2012a). Reduced calcification decreases photoprotective capability in the coccolithophorid Emiliania huxleyi. Plant & Cell Physiology, 53(7), 1267–1274. https://doi.org/10.1093/pcp/pcs066
Xu, K., & Gao, K. (2012b). Reduced calcification decreases photoprotective capability in the coccolithophorid Emiliania huxleyi. Plant & Cell Physiology, 53(7), 1267–1274. https://doi.org/10.1093/pcp/pcs066
Xu, K., Gao, K., Villafañe, V. E., & Helbling, E. W. (2011). Decreased calcification affects photosynthetic responses of Emiliania huxleyi exposed to UV radiation and elevated temperature. Biogeosciences Discussions, 8(1), 857–884. https://doi.org/10.5194/bgd-8-857-2011
Yong, W. K., Tan, Y. H., Poong, S. W., & Lim, P. E. (2016). Response of Microalgae in a Changing Climate and Environment. Malaysian Journal of Science, 35(2), 169–191. https://doi.org/10.22452/MJS.VOL35NO2.7
Zhou, C., Jiang, Y., Liu, B., Yan, X., & Zhang, W. (2012). The relationship between calcification and photosynthesis in the coccolithophorid Pleurochrysis carterae. Acta Ecologica Sinica, 32(1), 38–43. https://doi.org/10.1016/j.chnaes.2011.12.003
Zondervan, I. (2007). The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—A review. Deep Sea Research Part II: Topical Studies in Oceanography, 54(5–7), 521–537. https://doi.org/10.1016/j.dsr2.2006.12.004
Author Biographies
Nita Rukminasari, Universitas Hasanuddin
Faculty of Marine Science and Fisheries
Muhammad Lukman, Universitas Hasanuddin
Marine Science and Fisheries Faculty
Khusnul Yaqin, Universitas Hasanuddin
Marine Science and Fisheries Faculty
License
Copyright (c) 2023 BIOLINK (Jurnal Biologi Lingkungan Industri Kesehatan)
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License
that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. - Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Penulis.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).