Comparative Compression of Wavelet Haar Transformation with Discrete Wavelet Transform on Colored Image Compression

Christnatalis Christnatalis, Bachtiar Bachtiar, Rony Rony

Abstract


In this research, the algorithm used to compress images is using the haar wavelet transformation method and the discrete wavelet transform algorithm. The image compression based on Wavelet Wavelet transform uses a calculation system with decomposition with row direction and decomposition with column direction. While discrete wavelet transform-based image compression, the size of the compressed image produced will be more optimal because some information that is not so useful, not so felt, and not so seen by humans will be eliminated so that humans still assume that the data can still be used even though it is compressed. The data used are data taken directly, so the test results are obtained that digital image compression based on Wavelet Wavelet Transformation gets a compression ratio of 41%, while the discrete wavelet transform reaches 29.5%. Based on research problems regarding the efficiency of storage media, it can be concluded that the right algorithm to choose is the Haar Wavelet transformation algorithm. To improve compression results it is recommended to use wavelet transforms other than haar, such as daubechies, symlets, and so on.


Keywords


Digital image, compression, Wavelet haar, Wavelet transform

Full Text:

PDF

References


Aditya, Mahmud Faza. (2016). Analisis Kinerja Kompresi Citra Digital dengan Komparasi DWT, DCT dan Hybrid (DWT-DCT). UIN Sunan Gunung Djati Bandung.

Andrian. (2019). Perancangan Perangkat Lunak Kompresi Citra Menggunakan Transformasi Wavelet dan PCA. Vol 3 No. 1 ISSN 2598-6341.

Ferdinand, Simanjuntak. (2009). Pengolahan Citra Digital. https://digilib.ittelkom.ac.id.

Kurniawan, J., (2014). Implementasi Discrete Wavelet Transform untuk Penyisipan Gambar pada Gambar, Jurnal STMIKBudi Darma. Medan.

Neta, Maria Roslin Apriani. (2013). Perbandingan Algoritma Kompresi Terhadap Objek Citra Menggunakan JAVA.

Nugroho, Adi. (2010). Rekayasa Perangkat Lunak Berbasis Objek dengan Metode USDP. Yogyakarta : Andi.

Shofiyah. (2010). “Studi Perbandingan Kompresi Menggunakan Metode Discrete Cosine Transform (DCT) dan Discrete Wavelet Transform (DWT) pada Citra Digital”, Skripsi Teknik Informatika Universitas Islam Negeri Maulana Malik Ibrahim, Malang.

Subanar dan Suhartono. (2009). Wavelet Neural Networks untuk Peramalan Data Time Series Finansial, Laporan Penelitian Dasar Perguruan Tinggi, FMIPA, Universitas Gajah Mada, Yogyakarta.

Sutoyo, T, (2009)., Teori Pengolahan Citra Digital, Penerbit Andi, Yogyakarta.

Suma’inna, (2013)., Detection of Cardiac Abnormalities Based on ECG Pattern Recognition Using Wavelet and Artificial Neural Network, Far East Journal of Mathematical Sciences (FJMS) 76(1), pp 211-222.

Suma’inna, dan Dedi Lendra, (2013)., Aplikasi Wavelet Haar dan Daubechies pada Penentuan Periodisitas Gempa Bumi, UIN Syarif Hidayatullah Jakarta.

Suma’inna dan Gugun Gumilar, (2013)., Implementasi Transformasi Wavelet Haar dan Debauchies DB2 dalam Kompresi Citra Digital Cauchy Vol 2 No. 4 Hal. 211 – 215.

Suma’inna dan Dipo Alam. (2014). Kompresi Citra Berwarna Menggunakan Transformasi Wavelet, vol. 10, no. 1, pp 55-62. Basu, A., Watters, S., & Shepherd, M., 2002. Support Vector Machines for Text Categorization. Proceesings of the 36th Hawai International Conference on System Sciences (HICSS’03), 0-7695-1874-5/03 © 2002 IEEE.




DOI: https://doi.org/10.31289/jite.v3i2.3154

DOI (PDF): https://doi.org/10.31289/jite.v3i2.3154.g2430

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.