Prediction of Feasibility of Entrepreneurial Proposals in Student Creativity Program
Authors
Harun Nasrullah , Endah Sarah Wanty , Arief WibowoDOI:
10.31289/jite.v6i1.7253Published:
2022-07-21Issue:
Vol. 6 No. 1 (2022): Issues July 2022Keywords:
PKM, Program Kreativitas Mahasiswa, Naïve Bayes, K-Nearest NeighborDownloads
Abstract
Student Creativity Program is a program organized by the Directorate of Learning and Student Affairs, Directorate General of Higher Education, Research, and Technology, Ministry of Education, Culture, Research and Technology as a national level student creativity event as an effort to grow, accommodate, and realize students' creative and innovative ideas. Based on 2017-2021 data, each year an average of 63,337 proposals are received, administrative and substance evaluations involve complex assessment components and are carried out manually so that it takes a relatively long time in the calculation process. Then a special method is needed that speeds up the processing of assessment data. This research was conducted on the substance of the Entrepreneurship Sector to predict the feasibility of a proposal to get funding applying data mining with the Naive Bayes Classifier (NBC) and K-Nearest Neighbor (K-NN) algorithms with a comparison between Euclidean Distance and Manhattan Distance. From the results, it is known that NBC produces 96.49% accuracy and 0.912 Kappa. K-NN with the largest Euclidean Distance calculation in K-5, K-7 and K9 with an accuracy of 99.04% and Kappa 0.975, K-NN Manhattan Distance calculation produces the greatest accuracy of all the methods used by researchers, namely 100% and Kappa 1,00 categorized as Excellent. So the conclution is that the K-NN method with K-5 which produces the greatest accuracy and Kappa can be recommended to PKM stakeholders in funding feasibility algorithms.References
Ambar S, Y., Kusrini, & Henderi. (2019). Penerapan Algoritma K-Nearest Neighbour Dalam Menentukan Pembinaan Koperasi Kabupaten Kotawaringin Timur. Creative Information Technology Journal, 5(3), 232. https://doi.org/10.24076/citec.2018v5i3.179
Annur, H. (2018). Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes. ILKOM Jurnal Ilmiah, 10(2), 160–165. https://doi.org/10.33096/ilkom.v10i2.303.160-165
Han, J., Jian Pei, J., & Kamber, M. (2014). Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems) 3rd Edition. In Proceedings - 2013 International Conference on Machine Intelligence Research and Advancement, ICMIRA 2013. https://doi.org/10.1109/ICMIRA.2013.45
Harafani, H., & Al-Kautsar, H. A. (2021). Meningkatkan Kinerja K-NN Untuk Klasifikasi Kanker Payudara Dengan Seleksi Fitur. Jurnal Pendidikan Teknologi Dan Kejuruan, 18(1), 99. https://doi.org/10.23887/jptk-undiksha.v18i1.29905
Hidayati, N., & Hermawan, A. (2021). K-Nearest Neighbor (K-NN) algorithm with Euclidean and Manhattan in classification of student graduation. Journal of Engineering and Applied Technology, 2(2), 86–91. https://doi.org/10.21831/jeatech.v2i2.42777
Isnain, A. R., Supriyanto, J., & Kharisma, M. P. (2021). Implementation of K-Nearest Neighbor (K-NN) Algorithm For Public Sentiment Analysis of Online Learning. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 15(2), 121. https://doi.org/10.22146/ijccs.65176
Kemendikbud. (2021). Buku Pedoman Program Kreativitas Mahasiswa Tahun 2021. Kewirausahaan (PKM-K), 3, 89–117.
Larose, D. T. (2015). Data Mining and Predictive Analytics (Wiley Series on Methods and Applications in Data Mining) 2nd Edition, Kindle Edition (2nd Editio).
Ledolter, J. (2019). DATA MINING AND BUSINESS ANALYTICS WITH R. In A–Z of Digital Research Methods. https://doi.org/10.4324/9781351044677-5
Maimon, O., & Rokach, L. (2021). Data Mining and Knowledge Discovery. In Urban Book Series. https://doi.org/10.1007/978-981-15-8983-6_42
Muhammad, S., & Syamsuddin. (2021). Implementasi Algoritma Naive Bayes Untuk Memprediksi Predikat Ketuntasan Belajar Siswa Pasca Pandemi Covid 19. Infotek : Jurnal Informatika Dan Teknologi, 4(1), 29–38. https://doi.org/10.29408/jit.v4i1.2982
Nurmayanti, W. P., Saky, D. A. L., Malthuf, M., Gazali, M., & Hirzi, R. H. (2021). Penerapan Naive Bayes dalam Mengklasifikasikan Masyarakat Miskin di Desa Lepak. Geodika: Jurnal Kajian Ilmu Dan Pendidikan Geografi, 5(1), 123–132. https://doi.org/10.29408/geodika.v5i1.3430
Purba, B., & Syahputra, R. (2021). Implementasi metode Naive Bayes Classifier pada Evaluasi Kepuasan Mahasiswa terhadap Pembelajaran Daring. InfoTekJar: Jurnal Nasional Informatika …, 1. https://doi.org/10.30743/infotekjar.v6i1.4352
Putri, S. E. Y., Saniati, & Surahman, A. (2020). PENERAPAN MODEL NAIVE BAYES UNTUK MEMPREDIKSI POTENSI PENDAFTARAN SISWA DI SMK TAMAN SISWA TELUK BETUNG BERBASIS WEB. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 1(1), 93–99. https://doi.org/10.33365/jatika.v1i1.228
Rahayu, R. R., & Lidiawati. (2021). Implementasi Algoritma K-Nearest Neighbor Untuk Memprediksi Program Studi Bagi Calon Mahasiswa Baru. Infotek : Jurnal Informatika Dan Teknologi, 4(2), 131–141. https://doi.org/10.29408/jit.v4i2.3546
Risal, A. A. N., Yusuf, N. I., Kaswar, A. B., & Adiba, F. (2021). Penerapan Data Mining dalam Mengklasifikasikan Tingkat Kasus Covid-19 di Sulawesi Selatan Menggunakan Algoritma Naive Bayes. Indonesian Journal of Fundamental Scienes, 7(1), 18–28. https://doi.org/10.26858/ijfs.v7i1.20407
Sandi, D., Utami, E., & Fatkhurohman, A. (2022). Klasifikasi Opini Dengan Menggunakan Algoritma K-Nearest Neighbor Pada Berita Vaksinasi Di Twitter. NUANSA INFORMATIKA, 16(1), 156–160. https://doi.org/10.25134/nuansa.v16i1.5343
Sari, N., & Wulanningrum, R. (2021). Implementation of the K-Nearest Neighbor Algorithm for Identification of Orchid Flower Image. JTECS : Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem Dan Komputer, 1(2), 177. https://doi.org/10.32503/jtecs.v1i2.1750
Sekneg. (2012). Undang-Undang Republik Indonesia Nomor 12 Tahun 2012 Tentang Pendidikan Tinggi (Issue Kolisch 1996).
Shidiq, F., Hidayat, E. W., & Kurniati, N. I. (2021). Penerapan Metode K-Nearest Neighbor (KNN) Untuk Menentukan Ikan Cupang Dengan Ekstraksi Fitur Ciri Bentuk Dan Canny. Innovation in Research of Informatics (INNOVATICS), 3(2), 39–46. https://doi.org/10.37058/innovatics.v3i2.3093
Susana, H., Suarna, N., Fathurrohman, & Kaslani. (2022). PENERAPAN MODEL KLASIFIKASI METODE NAIVE BAYES TERHADAP PENGGUNAAN AKSES INTERNET. Jurnal Riset Sistem Informasi Dan Teknologi Informasi (JURSISTEKNI), 4(1), 1–8. https://doi.org/10.52005/jursistekni.v4i1.96
Susilo, A. thoriq, Setiawan, H., Saputro, R. A., Purwadi, T., & Saifudin, A. (2021). Penggunaan Metode Naïve Bayes untuk Memprediksi Tingkat Kemenangan pada Game Mobile Legends. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 4(1), 46. https://doi.org/10.32493/jtsi.v4i1.7807
Turban, E., Aronson, J. E., & Liang, T.-P. (2021). Decision Support Systems and Intelligent System. Diabetes Technology and Therapeutics, 23(S2), S69–S84. https://doi.org/10.1089/dia.2021.2505
Wardah, N. N., Yunita, A. M., Sugiarto, A., & Rizky, R. (2021). Implementasi Metode Naïve Bayes Untuk Menentukan Pegawai Terbaik Di Universitas Mathla’ul Anwar Banten. Jurnal Teknik Informatika Unis, 9(1), 2252–5351. https://doi.org/10.33592/jutis.v9i1.1291
Wisswani, N. W., Tulili, T. R., Andrijasa, M. F., Satria, M. R., Jumani, S., & Wahyudi, E. (2020). Klasifikasi Tipe Gelandang Sepak Bola Berdasarkan Data Kemampuan Menggunakan Metode Naive Bayes. Just TI (Jurnal Sains Terapan Teknologi Informasi), 12(2), 46. https://doi.org/10.46964/justti.v12i2.370
Xhemali, D., J. Hinde, C., & G. Stone, R. (2009). Naive Bayes vs. Decision Trees vs. Neural Networks in the Classification of Training Web Pages. International Journal of Computer Science, 4(1), 16–23. http://cogprints.org/6708/
Yusra, R. N., Sitompul, O. S., & Sawaluddin. (2021). Kombinasi K-Nearest Neighbor ( KNN ) dan Relief-F Untuk Meningkatkan Akurasi Pada Klasifikasi Data. InfoTekJar: Jurnal Nasional Informatika Dan Teknologi Jaringan, 1, 0–5. https://doi.org/10.30743/infotekjar.v6i1.4106
License
This work is licensed under aCreative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).