APPLICATION OF MACHINE LEARNING WITH THE BINARY DECISION TREE MODEL IN DETERMINING THE CLASSIFICATION OF DENTAL DISEASE

Authors

  • Mutammimul Ula Universitas malikussaleh Prodi Sistem Informasi fakultas Teknik
  • Fajar Tri Tri Anjani Universitas Malikussaleh
  • Ananda Faridhatul Ulva Universitas Malikussaleh
  • Ilham Sahputra Universitas Malikussaleh
  • Angga Pratama Universitas Malikussaleh

DOI:

https://doi.org/10.31289/jite.v6i1.7341

Keywords:

Binary Decision Tree, Machine Learning, Klasifikasi, rule.

Abstract

The dangers of health problems in dental disease are common for children and adults. Many dental problems get priority treatment based on data from Riskesdas, about 67.6% of the Indonesian population suffers from dental and oral problems. This affects other parts of the organ that are interrelated. Therefore, this study formulates how to solve the determination of dental disease, by applying the UDB model in machine learning. The purpose of this study was to determine the application of machine learning Binary Decision Tree (BDT) in the classification of classified dental diseases identified by decision trees in determining the results of dental disease predictions including groups and how to solve them. The research methodology in the first stage of data collection was carried out directly with the dental clinic at Cut Meutia Lhokseumawe Hospital. Then input the dental disease data along with the dental disease symptom data. The final stage is dividing the attribute values in viewing the value at a predetermined branch which is then in the form of a decision tree as a reference for the final prediction. The results of the assessment have each value indicating a high level of accuracy, with an accuracy of 92 percent and an inaccuracy of 8 percent of the 40 data points tested. Furthermore, the conclusion of this study can produce an appropriate classification of dental disease and is able to produce accurate results seen from a small error rate

Author Biography

Mutammimul Ula, Universitas malikussaleh Prodi Sistem Informasi fakultas Teknik

Prodi Sistem Informasi Universitas Malikussaleh

References

Charbuty, B., & Abdulazeez, A. (2021). Classification Based on Decision Tree Algorithm for Machine Learning. Journal of Applied Science and Technology Trends, 2(01), 20–28. https://doi.org/10.38094/jastt20165

DINATA, Rozzi Kesuma; HASDYNA, Novia; ALIF, M. (2021). Applied of Information Gain Algorithm for Culinary Recommendation System in Lhokseumawe. Journal Of Informatics And Telecommunication Engineering, 5(1), 45–52. https://doi.org/https://doi.org/10.31289/jite.v5i1.5199

Dinesh, P., & P., K. (2022). Medical Image Prediction for Diagnosis of Breast Cancer Disease Comparing the Machine Learning Algorithms: SVM, KNN, Logistic Regression, Random Forest, and Decision Tree to Measure Accuracy. ECS Transactions, 107(1), 12681–12691. https://doi.org/10.1149/10701.12681ecst

Erika Novianti, M. J. (2021). Sistem Pakar Diagnosa Penyakit Gigi Menggunakan Metode Naive Bayes. Jurnal Sistem Informasi Dan Teknologi Jaringan (SISFOTEKJAR), 2(2), 71–76.

Hari, T. R. S., & Sumijan, S. (2021). Sistem Pakar dengan Menggunakan Metode Naive Bayes dalam Mengidentifikasi Penyakit Karies pada Gigi Manusia. Jurnal Sistim Informasi Dan Teknologi, 233–238.

Latifah, F. (2016). Penyimpanan Data Dalam Teknik Pemrograman ( kajian algorithma pohon pada teknik pemrograman ). 13(2), 23–32. http://ejournal.nusamandiri.ac.id/ejurnal/index.php/techno/artcle/view/357/287

Liang, J., Qin, Z., Xiao, S., Ou, L., & Lin, X. (2019). Efficient and Secure Decision Tree Classification for Cloud-Assisted Online Diagnosis Services. IEEE Transactions on Dependable and Secure Computing. https://doi.org/10.1109/TDSC.2019.2922958

Maharani, A. D. (2015). USE OF CLASSIFICATION AND REGRESSION TREE (CART) FOR CHRONIC PERIODONTITIS CLASSIFICATION IN DENTAL HOSPITAL OF HANG TUAH UNIVERSITY SURABAYA. Jurnal Ilmiah Kedokteran Wijaya Kusuma. https://doi.org/10.30742/jikw.v4i2.7

Maryam Ameen Sulaiman. (2020). Evaluating Data Mining Classification Methods Performance in Internet of Things Applications. Journal of Soft Computing and Data Mining, 1(2), 11–25.

Nindy , et., A. (2017). Implementasi Metode Binary Decision Tree Support Vector Machine (BDTSVM) untuk Klasifikasi Penyakit Gigi dan Mulut (Studi Kasus: Puskesmas Dinoyo Malang). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(8), 2919–2925. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1714

Nindy, M. T. F. (2018). Implementasi Metode Binary Decision Tree Support Vector Machine (BDTSVM) untuk Klasifikasi Penyakit Gigi dan Mulut (Studi Kasus: Puskesmas Dinoyo Malang). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2919–2925.

Reza. F.P. (2010). Gambaran Pengetahuan Kebersihan Gigi dan Mulut Ditinjau dan Menyikat Gigi Pada Murid Kelas V dan VI SD Negeri NO 18 banda Aceh Tahun 2010. Karya Tulis Ilmiah Untuk Mendapat Gelar Amkg., Jurusan Kesehatan Gigi Poltekkes Aceh, 2.

Rimi, I. F., Arif, M. A. I., Akter, S., Rahman, M. R., Islam, A. H. M. S., & Habib, M. T. (2022). Machine learning techniques for dental disease prediction. Iran Journal of Computer Science, 1–9. https://doi.org/10.1007/s42044-022-00101-0

Rusliyanti, N. K. L., Hidayat, A. R., & Seha, H. N. (2016). Analisis ketepatan pengkodean diagnosis berdasarkan ICD-10 denganpenerapan karakter ke-5 pada pasien fraktur rawat jalan semester II diRSU Mitra Paramedika Yogyakarta.

Shang, C., Li, M., Feng, S., Jiang, Q., & Fan, J. (2013). Feature selection via maximizing global information gain for text classification. Knowledge-Based Systems, 54, 298–309. https://doi.org/10.1016/j.knosys.2013.09.019

Siahaan, M. (2021). An Analysis of Contract Employee Performance Assessment Using Machine Learning. Journal Of Informatics And Telecommunication Engineering, 5(1). https://doi.org/10.31289/jite.v5i1.5357

Silahudin, D., Henderi, & Holidin, A. (2020). Model Expert System for Diagnosis of Covid-19 Using Naïve Bayes Classifier. IOP Conference Series: Materials Science and Engineering, 17(1), 121–131. https://doi.org/10.1088/1757-899X/1007/1/012067

Sirat., et al. 2019. (2019). EFEKTIVITAS PELATIHAN DOKTER GIGI KECIL UNTUK MENINGKATKAN KEBERSIHAN GIGI DAN MULUT. Jurnal Kesehatan Gigi, 6(1), 5. https://doi.org/10.31983/jkg.v6i1.3895

Turanoglu-Bekar, E., Ulutagay, G., & Kantarcı-Savas, S. (2016). Classification of Thyroid Disease by Using Data Mining Models: A Comparison of Decision Tree Algorithms. The Oxford Journal of Intelligent Decision and Data Science, 2016(2), 13–28. https://doi.org/10.5899/2016/ojids-00002

Yang, F.-J. (2019). An Extended Idea about Decision Trees. 2019 International Conference on Computational Science and Computational Intelligence (CSCI), 349–354. https://doi.org/10.1109/CSCI49370.2019.00068

Yu, H., Huang, X., Hu, X., & Cai, H. (2010). A Comparative Study on Data Mining Algorithms for Individual Credit Risk Evaluation. 2010 International Conference on Management of E-Commerce and e-Government, 35–38. https://doi.org/10.1109/ICMeCG.2010.16

Downloads

Published

2022-07-21