Numerical Analysis of Variations Distance Formulas on K Nearest Neighbors In Classifying Malaria Parasite Blood Cells
Authors
Taufik Ismail Simanjuntak , Juliansyah Putra Tanjung , Mahardika abdi prawira tanjung , Cut Try Utari , Muhathir MuhathirDOI:
10.31289/jite.v6i1.5464Published:
2022-07-25Issue:
Vol. 6 No. 1 (2022): Issues July 2022Keywords:
KNN, Distance, MalariaDownloads
Abstract
Malaria is one of the numerous acute and chronic diseases. Even malaria can pose a threat to a person's safety. The original cause of malaria was an infection with a protozoan of the genus Plasmodium, which was transmitted by the bite of a mosquito. This Anopheles mosquito parasite infects red blood cells throughout the body, resulting in an enlarged spleen. This research aims to make it easier for physicians to classify blood images as malaria-infected or not. If the input is a blood image, then SURF Feature Extraction will be used to extract the blood image. We therefore obtained weight results based on the extraction results. The weighted results generated by the SURF extraction process will be classified using the KNN Algorithm to determine whether or not an individual is infected with malaria. This study's tests compared various distance formulas utilized by the KNN classification method. Comparing the results of malaria blood image classification using the KNN classification method with variations in the distance formula, it is evident in table 7 that correlation is the optimal distance formula for malaria parasite blood cells recognition, followed by cosine. According to the results of KNN's tests, it is not optimal at classifying blood images containing malaria, but these results are categorized as goodReferences
Agrawal, P., Sharma, T., & Verma, N. K. (2020). Supervised approach for object identification using speeded up robust features. International Journal of Advanced Intelligence Paradigms, 15(2), 165-182.
Andoni, A., & Indyk, P. (2008). Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High. Communications of the ACM, 51(1), 117-122.
Banyal, N. A., Surianti, S., & Dayat, A. R. (2016). Klasifikasi Citra Plasmodium Penyebab Penyakit Malaria dalam Sel Darah Merah Manusia dengan Menggunakan Metode Multi Class Support Vector Machine (SVM). Jurnal Ilmiah, 8(2).
Bay, H., Tuytelaars, T., & Gool, L. V. (2006). SURF: Speeded Up Robust Features,†European Conference on Computer Vision. 3951(1), 404-417.
Biantong, T. R., Furqon, M. T., & Soebroto, A. A. (2019). Implementasi Metode Support Vector Machine Untuk Klasifikasi Jenis. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(2).
Budianita, E., Jasril, J., & Handayani, L. (2015). Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbour Untuk Membangun Aplikasi Pembeda Daging Sapi dan Babi. Jurnal Sains, Teknologi dan Industri, 12, 242-247.
Credit Card Fraud Detection Using Data Analytic Techniques. (2020). Scientific Journal.
Dayat, A. R., & Banyal, N. A. (2017). Klasifikasi Perkembangbiakan Plasmodium Penyebab Penyakit Malaria dalam Sel Darah Merah Manusia dengan Menggunakan Support Vector Machine (Svm) di Kota Jayapura-Papua. Seminar Nasional .
Evans, C. (2009). Notes on the OpenSURF Library.
Fitriany, J., & Sabiq, A. (2018). Malaria. 4(2).
Fuhad, K. M., Tuba, J. F., Sarker, M. R., Momen, S., Mohammed, N., & Rahman, T. (2020). Deep Learning Based Automatic Malaria Parasite Detection from Blood Smear and Its Smartphone Based Application. Diagnostics.
Hossain, E., Hossain, M. F., & Rahaman, M. A. (2019). A Color and Texture Based Approach for the Detection and Classification of Plant Leaf Disease Using KNN Classifier. International Conference on Electrical, Computer and Communication Engineering (ECCE).
Hu, L. Y., Huang, M. W., Ke, S. W., & Tsai, C. F. (2016). The distance function effect on k nearest neighbor classification for medical datasets. Springerplus, 5(1).
Imandoust, S. B., & Bolandraftar, M. (2013). Application of K-Nearest Neighbor (KNN) Approach for Predicting Economic Events: Theoretical Background. Journal of Engineering Research and Applications, 3(5), 605-610.
Iswanto, Tulus, & Sihombing, P. (2021). Comparison of Distance Models on K-Nearest Neighbor Algorithm in Stroke Disease Detection. Applied Technology and Computing Science Journal, 4(1), 63-68.
Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2), 91-110.
Muhathir, M., Hidayah, W., & Ifantiska, D. (2020). Utilization of Support Vector Machine and Speeded up Robust Features Extraction in Classifying Fruit Imagery. Computer Engineering and Applications, 9(3), 183-193.
Muhathir, Rizal, R. A., Sihotang, J. S., & Gultom, R. (2019). Comparison Of Surf And Hog Extraction In Classifying The Blood Image Of Malaria Parasites Using Svm. International Conference Of Computer Science And Information Technology (Icosnikom).
Muhathir, Sibarani, T. T., & Al-Khowarizmi. (2020, May). Analysis K-Nearest Neighbors (KNN) in Identifying Tuberculosis Disease. Al'adzkiya International of Computer Science and Information Technology (AIoCSIT) JournalI, 1(1), 33-38.
Pariyandani, A., Larasati, D. A., Wanti, E. P., & Muhathir, M. (2019). Klasifikasi Citra Ikan Berformalin Menggunakan Metode k-NN dan GLCM. SEMANTIKA, 2(1), 42-47.
Poostchi, M., Silamut, K., Maude, R. J., Jaeger, S., & Thoma, G. (2017). Image analysis and machine learning for detecting malaria. Translational Research, 194.
Pratiwi, N. K., Ibrahim, N., Fu'adah, Y. N., & Rizal Syamsul. (2021). Deteksi Parasit Plasmodium pada Citra Mikroskopis Hapusan Darah dengan Metode Deep Learning. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(2), 306-317.
Rahman, A., Zunair, H., Rahman, M. S., Yuki, J. Q., Biswas, S., Alam, M. A., . . . Mahdy, M. (2019). Improving Malaria Parasite Detection from Red Blood.
Rajaraman, S., Jaeger, S., & Antani, S. K. (2015). Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ.
Rambe, A., Tanjung, J. P., & Muhathir, M. (2022). Shafiyyatul Amaliyyah School Student Face Absence Using Principal Component Analysis and K – Nearest Neighbor. JITE (Journal of Informatics and Telecommunication Engineering),, 5(2), 414-422. doi:10.31289/jite.v5i2.6214
Sandy, B., Siahaan, J. K., Permana, P., & Muhathir. (2019, November). Klasifikasi Citra Wayang Dengan Menggunakan Metode k-NN & GLCM. SEMANTIKA, 2, 71-77.
Setiawan, A. W., Rahman, Y. A., Faisal, A., Siburian, M., Resfita, N., Gifari, M. W., & Setiawan , R. (2019). Deteksi Malaria Berbasis Segmentasi Warna Citra dan Pembelajaran Mesin. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 8(4), 769-776.
Shee, H., Cheruiyot, W., & Kimani, S. (2014). Application of k-Nearest Neighbour Classification in Medical Data Mining. International Journal of Information and Communication Technology Research, 4, 121-128.
Subairi, S., Rahmadwati, R., & Yudaningtyas, E. (2018). Implementasi Metode k-Nearest Neighbor pada Pengenalan Pola Tekstur Citra Saliva untuk Deteksi Ovulasi. EECCIS, 12, 9-14.
Tahmooresi, M., Afshar, A., Rad, B. B., Nowshath, K. B., & Bamiah, M. A. (2018). Early Detection of Breast Cancer Using Machine Learning Techniques. Journal of Telecommunication, Electronic and Computer Engineering.
Yan, D., Wang, Y., Wang, J., Wang, H., & Li, Z. (2019). K-nearest Neighbor Search by Random Projection Forests. Mathematics and Data Science.
License
This work is licensed under aCreative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).